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The general form of tensor functions of axial and polar vectors, compatlable 
with texture symmetry, is given. l’he sought functions (scalar; polar and 
axial vectors; symmetric, antisymmetric and generai tensors of the second 
rank) are represented by means of a system of linearly Independent vectors, 
which depend on products and contractions of the so called geometrical ten- 
sors. The coefficients of the expansion are arbitrary single valued scalar 
functions which depend on the mentioned quantities. The obtained expansions 
satisfy two Important basic requirements: (1) each component of a tensor 
function Is an entire rational function of the tensor argument, that is, a 
polynomial In Its arguments, (2) the representation od each tensor function 
is unique, that is, the tensor function vanishes If and only if all of the 
coefficients In Its expansion are identically zero, considered as polgnoml- 
als In their arguments. A particular case of these functions Is considered, 
that of the potential functions. The formulas given are the analogue, for 
vector argument and anisotropic medium, of the Hamilton-Cayley formulas, 
when these are considered as the general form of tensor functions of a ten- 
sor argument which are compatible with en isotropic medium. 

In Section 1 the fundamental concepts and the formulation of the problem 
will be found while Sections 2 and 3 are devoted to the general method of 
solution employed. Sections 4 and 5 contain the general form of the tensor 
functions of a vector and an axial vector which are compatible with a tex- 
ture symmetry. Potential functions are considered in Section 6. In Section 
7 the tensor functions are applied In constructing invariant tensors . In 
Section 8 these results are related to the Hamilton-Cayley formula. 

1. In many considerations of physics and mechanics of continuous media 

one has to employ relations of the form 

‘I’ = F (+,, v - . , A(ri,J (1.1) 

where the tensors f and AtIJ (p = 1,. . .,tn) are so called field tensors 

which describe certain physical fields. 

The material tensors 
DW 

(0 1 1 ,.,.,*), which determine the characteris- 

tic properties of the medium, usually appear explicitly in (1.1) 

T = F (D(1) , . . ., D(s); AtI,, . . ., =~~rn,) (1.2) 

804 



805 

The relations (1.1) and (1.2) depict the tensor field f which Is pro- 

duced at a certain point of the medium as a consequence of the action at 

this point of the tensor fields AM. 

Specific cases of the relations (1.2) are, for example, the well-known 

Hooke’s law equations for anisotropic media and their extensions to the case 

of plezo-electric and elastic-viscous media. As a matter of fact, these 

equations represent only the first terms of the Taylor expansions of the com- 

ponents of the stress tensor in terms of the components of the deformation 

tensor, the velocity of deformation tensor, and the electric field vector. 

In order to take into account the higher order terms In the expansions, one 

has to introduce material tensors Dfo, of higher rank. For example , the 

expansion of the component TiJ of a second order rank tensor T in terms 

of the components A, of the vector A has the form 
. 

T’j = D’j _t Dffk,” + Dff;,AkA’ + . . , 
U-3) 

The tensors 4,) , which describe the properties of the contunuous medium, 
must be invariant with respect to the group of point symmetry G of the 
medium (field tenscrs, of course, are not required to satisfy this condition). 
The consideration of the quadratic, cubic, and higher order approximations 
requires the construction of the corresponding higher rank tensors which are 
Invariant with respect to the point group. Solution of this problem , 
although elementary, Is extremely complicated. 

Nevertheless, the expanslon (1.3)is not completely satisfactory, not only 
because of the technical difficulties already mentioned, but also because,as 
a matter of fact, it represents only polynomial dependence of the components 
of the tensor r on the components of the tensor 4 . Nominally, the series 
(I .3) represents any analytic function T = F (.f,) l..at %tm))lbut practically the 
series Is always cut off after a few terms and a satlsPactory accuracy is 
obtained in a certain vicinity of the expansion center. Besides, in mechan- 
ics of continuous media one employs, sometlmes,models which exlblt a nonana- 
lytic dependence of some tensors on others. 

In the mechanics of Isotropic media, already long ago one had considered an 

arbitrary functional dependence between tensors which are compatible with 

such a medium. The theory of these Isotropic tensor functions Is described, 

for example, In [ 13. They are widely used in the nonlinear theory of elas- 

ticity [2] and of an elastic-viscous [3] Isotropic continuous medium. It 

seems natural to seek to extend the theory of tensor functions to an aniso- 

tropic continuous medium. In this paper this problem Is solved when the 

point group of symmetry of the anisotropic medium is one of the limit point 

groups of symmetry of Pierre Curie (“), the argument of the function is a 

polar or axial vector, while the function itself is a polar or axial vector, 

or a symmetric or general tensor of the second rank. 

In order to formulate more precisely the problem, one needs the notions 
of internal and external symmetries of tensors. The group of internal sym- 
metry of a tensor [5] Is, in the general case, an antisymmetric group 161. 

“) Anisotropic media with this kind of symmetry are often called textures 
(see, for example, [4]). 
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Its operations are permutations of indices which leave invariant all compo- 
nents of a tensor, and its antioperations are the permutations which reverse 
the sign of each component. The group of internal symmetry of a tensor may 
be represented by the transformation T of the orthogonal group which trans- 
forms its own components. If a tensor of rank r does not possess internal 
symmetry, then its components are repre8ented by the 7th power of a Vector repre- 
sentation V of the orthogonal group: 7 = V’. If the tensor possesses a 
nontrivial internal symmetry , then T Is a certain symmetrlzatlon of an 
rth power of a vector representation V . The symbol of this representation 
will be used, following Jahn [7], to denote the internal symmetry of a ten- 
sor . Thus, the symmetry of a tensor of rank P , with resect to every index, 
will be designated by means of the symbol of an rth symmetric power of a vet- 
tor representation [tr] and the symmetry and antis~etry with resect to s 
indlcee, where 8 < r , will be denoted respectively by C v’]v’-~ and 
I P jr-‘, etc. 

%e group of exterior symmetry [8] of a tensor (“f is the maximal point 
group G which leaves invariant all the components of a tensor; if 
is a transformation belonging to the group 0 

c; (g) 
of exterior aymmertry of a 

tensor Ai,...b and only in this case 

(“y(g) . . . & (g) - a::‘. . . 6:;‘) Ail.*Jr = 0 (l.4 

Bnploylng the termlnology just Introduced, let us formulate the problem 

before us. Suppose that the components of a tensor T of rank r and lnter- 

nal symmetry 7 are functions of the components of a tensor A of rank e , 

internal symmetry u and exterior symmetry GA 

Ti,...$. = @...$ fA&...$,j 
(3.5) 

Since 1 and A are tensors, then, under an arbitrary transformation of 

coordinates ai, , the transformed components of the tensors T and A must 

satisfy Equation 

(1.6) 
If u;, ;, t= C”(g), ge G is one of the point transformations of the group 

G , then auations (1.5) and (1.6) must be equivalent. The problem consists 

in finding the most general form of the functions GP GA, which are such 

that, for given F%...$ and 0, the equations (1.5) and (1.6) are Indeed 

equivalent . , 

2. The components of the tensor T must, obviously, remain invariant 

under all transformations which belong to the point f**cf group r WhiCh iS 

the intersection of the point group G of symmetry of the medium and the 

group GA of external symmetry of the tensor A . The set of all tensors 

which fulfill this requirement and possess the internal symmetry T , con- 

stitute a linear space, whose dimension, as follows from the theory of group 

representations [g], equals 

R = j&j c x, (g) 
t?EP 

(2.f) 

‘1 In [Sl, where this concept was firts introduced, the term “tensor sym- 
metr$ was employed. 

**) The group f may coincide with the group G, of external symmetry UP 
the tensor 2 , but, in general, it is only a subgroup. 



Here N(r) denotes the order of the group I' and ~~(0) Is the trace 

of the matrix corresponding to the element 0 of the group r under the 

representation 7 of this group. If I? is one of the limit point groups, 

then the summation Is understood to meGan Integration over the group. 

The tensor f , as In [l, 4, 5 and IO] will be sought in the form 

(2.2) 

where Q(v) (v = 1, . . . 4 are linearly Independent tensors of Internal 

symmetry 7 , whose components are Invariant with respect to the group r . 

Since the tensors Qty) constitute a basis for the linear space of tensors T, 

it Is true that any tensor having the required properties may be represented 

In the form (2.2). The coefficients f(+ of this expansion, as well as the 

components of the tensors Qtv,, are certain functions of the components of 
the tensor A . In the calculations we shall employ the so called geometrl- 

cal tensors K(,, (n = 1, . . . p) (introduced by Sedov and Lokh? in [4 and 

ll]), which is a set of p tensors with constant components, 'eterminlng 

uniquely the point group c , the intersection of the 
4 

external &mmetry 

groups of these tensors. 

Obviously, all the scalars obtained by means of multiplications and con- 

tractions from the geometrical tensors K(,,,of the group G , and the tensor 

A , are, themselves, Invariants of the tensor A with respect to the group 

G , and, desides, are Integral rational Invariants. As Id known [12 and 131, 

all those Invariant8 may be obtained by means of multlpllcatlons and linear 

combinations out of a certain finite set (P,,...,(P,., the so called Integral 

rational basis. The number k may colnclde with the number 

k, = (2.3) 

of functionally Independent Invariants, but it may also exceed it. 

We shall call a representation .~(v~,..~,c+) unique, whenever f , con- 
sidered as a function of the components A]I.*‘~~. Is Identically zero; it 
follows that It must also equal zero when considered as a function of the 
Invariants gr , thought of as Independent arguments. In the case k = k, 
each invarlant f may be uniquely written in the form &,...,m ). If 
k’ko > let us isolate,from the total number of Invariants, k wh ch are 'i 
functionally Independent: 'PI,. . . r(Pk, (let us call them wprinc%pal"), and 
let the remaining (wcomplementary") invariants be denoted by 

$,I * . * ,4$ (1 = k - hl). 

Then It may be proved that [14] an arbitrary Invariant ( may be uniquely 
written in the form 

where fos fx, f+v * * * are, either arbitrary functions of the principal invari- 
ants or else are Identically zero, and where, besides, begiMing with a cer- 
tain Index t 
(2.4) has 

all fh,...Al fhl...X$.l+lv * * 'are equal to zero (and thus the sum 
only's finite nukber of terms). Further, in the concrete cases of 
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Sections 4 to 6, we will have k = k, . 
In many papers [14 to 163 It is supposed that 

In the invariants 9, and the components Aj . &I 
and @ are polynomials 

is restriction, as shown 
In [17], may be easily removed. For arbitra%jy%‘unctlons, on the other hand, 
the concept of unique representation, which is very easy for polynomials, 
becomes meaningless. For this reason, the functions f will be supposed, 
In the sequel, to be piecewise analytic, for the needs of practice this class 
is wide enough, and the concept of unique representation does not involve 
any doubts in this case. 

From the geometric tensors Kto, and the tensor A, by means of multlpli- 

cations and contractions, we may obtain also the set of tensors of internal 

symmetry 7 . All of these, obviously, are Invariant with respect to the 

group r . Formula (2.1) shows that from these one may choose (In a variety 

of ways) exactly n linearly Independent tensors. These may be used as a 

basis in the expansion (2.2) of the tensors Qt",. 

Tensor functions of the form 

Ti’-% = i fb,, (cpI, . . .( (rk) (I;;;.” for k = IsO 
“=I 

or 

Til...ir 
for k>ke 

(2.5) 

(2.6) 

obviously satisfy the requirements. Indeed, since the functions fw and 

@(“,, and also the geometric tensors Ii,,, are Invariants of the transforma- 

tions of the group G, Equations (1.6), for u:, = c!, (g), g E 6’ are simply 

a linear combination of Equations (1.5), hence the passage from the system 

(1.5) to the system (1.6) is reverslble. Consequently, the system (1.5) 

and (1.6) are equivalent. 

3. Since, in applications, one often restricts attention to entire ra- 

tional tensor functions, it is natural to restrict further the expansions 

(2.5) and (2.6). Then, let us require further: .(l) that .f,.,) (ql, . . ., (ph.) 

be polynomials In their arguments whenever T ii""r are polynomials in the 

Aj”“js, (2) that th e expansions (2.5) and (2.6) be unique, that Is, that 

T = 0 If and only if all f(.,, - 0. 

The method followed here,in view of the linear independence of the tensors 

Qwv and the uniqueness of the basks functions f~vj - certainly satisfies 

the second requirement, but the first requirement remains to be verified. 

One may employ another method suggested by Rlvlin cl5 and 161, then the 

first requirement is clearly satisfied, but It remains to verify that the 

second one Is actually sat,lsfled. 

Let us Indicate how to verify that the second requirement is fulfilled. 

Let us expand the tensor T in powers of the tensor A 

T = 2% 
Q 

(3.1) 
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where the components of the tensor T,,, are homogeneous polynomials of degree 

0 with respect to the components of A. The number of linearly lndepend- . 
ent (") components of the tensor T(,, is 

mQ = N&Z x7 (d 

and, In particular 

[x,pl (d (3.2) 

mo = N&z0 x, (g) (3.3) 

Here [xaQ] (g) is the trace of the matrix of the representation [=q] 

which corresponds to theelement 0 of the group G. 

On the other hand, the number m," of terms of degree 4 , with respect 

to the components of A, in the sum Xjtv,Qf:;“‘r can be easily calculated 

by the methods of combinatorial analysis [18]. 

If, as It happens In this case, k = k,,, then the number of terms of 

degree q In each of the polynomials ftv, equals the coefficient of tP in 

the formal expansion 

ii (1 ) _ tbW -I 

x=1 

where b(x) 1s the degree of the principal lnve'rlant 9~ with respect to 

A. From the definition of the tensor Qty) It follows that its components 
are homogeneous polynomials of the same degree c(v) wlth respect to A. 

Therefore, mO* equals the coefficient of t Q In the formal expansion 

F* (t) = i lc (") fi (1 _ tb tX))-l (3.4) 
“=I x=1 

If k>k,, then F*(t) can be obtained almost as easily [lb]. 

The equality of the numbers mp and mp*, for every q , is the criterion 

of fulfillment of the first requirement. 

All reducible formulas in Sections 4 and 5 are verified for linear lnde- 

pendence of the tensors Qtv, and for equality of numbers ma and m,"at all 

values of Q . 

Formula (3.2), however, Is not convenient for calculation of mp. Let UJ 
expand the representation 7 X [aa] of the orthogonal group In Irreducible 
representations. 

If B is odd then In the vector representation (a = V = D,“)we have 

[aQ] = Dlu + 02 f ..a $_ Dh’ 

") Here the coefficients of the linear relations are numbers, and not 
functions of the components of A , as was the case in (2.5) and (2.6). 
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and, for the axial-vector representation (a = (V*} =I (BgI) we have 

[a*] = Big + “$ + . . . + 0,” 

If 9 is even, then in both cases we have that 

[a*] = D$ + D,g + . . . + 0; 

where D,‘ and p,” are conventional notations for the even and odd irre- 
ducible representations of weight f of the orthogonal group (see 1197). 
The expansion of 7 in terms of irreducible representations of the ortho- 
gonal group, and the subsequent multiplying of the irreducible representa- 
tions may be carried out In an elementary way [9]. The number mp equals 
the number of unique representations of 7 x [a*] in Irreducible represen- 
tations of the group C . Hence, if G Is the orthogonal group, then m 
is the number of DO‘ representations In the expansion of 7 X [aq ] in lr;e- 
ducible representations of the orthogonal group, while if G is the group 
of rotations, then m is the sum of the p ’ and By representations in 
this expansion. The Formulas for the reduc?fon of tie irreducible represen- 
tations of the orthogonal group to the representations of its subgroups (73, 
enable one to compute the number of un*que representations of each group in 
the expansion of 7 X [uq 1, that is, to determine mp for all the remaining 
groups. 

4. The sets of the geometrical tensors K,,q, which determine the limit 

point groups, were given by Sedov and Lokhln [4 and 113; here these sets 

will be in a slightly modified form, more convenient for our application. 

Let e,, e, and e3 be unit vectors of a Cartesian system of coordinates, 

with es directed along the principal axis. Let their components In an 

arbitrary coordinate system be denoted by Et, ~4 and ci, respectively. 

For brevity, we shall employ the notation E’V. . . Ek ss vj.-k and the analo- 

gous ones +.k and cfj...k. 

The geometrical tensors for all the limit groups (*), In this nOtatlOn, 

are given by 

group oo/ 00.222 

group 00 j co 

grorup m.so:m 

group oc : 2 

group 00.222 

@k G 2~[jrlkl) 

group oo 

group 00 

: m pk, Yik, aik 

p, .$k, aik 

We shall next write down the basis lnvarlants p,, of a vector 8, scalar 

functions j(B), vector functions V(B), antlsynunetric tensor functions of 

the second rank W(B), and symmetric tensor functions of the second rank 

S(B), compatible with the symmetries of an anisotropic medium, for each of 

the seven limit point groups. 

*) The groups are designated as was done by Shubnlkov 161. 
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cp = ga@=B’, f = f (cp), Vi = fB’, Sik = flgik + f2BiBk 

Wzk = 0 for 00/w am, Wik = fE:t=B= for m/oo (4.1) 
Group m-ca: m 

‘~1 = C-=,3=& (~2 = y=pB=BP> f = f ((PI, rp?) 

Vi = (f&i + fzy:) B”; w’k = fgy;lB”BP 

Sik = f15’k + fzyik + (fsy:y; + fJty$‘) B”B’ (4.2) 

Grow 03 : 2 

‘~1 = C=,B=@, ‘pa = y=pB=& f = f ((PI9 %) 

V’ = (f&L + f%y:) B” + f&=dpB=BP 

Wik = (f,~=Qik + f2~%-2!:) B” + f,&“plB=BP 

Sik=fl~k+fay~~+fs~(iS2~~B=+(f,y~y;+f~5h’y~)) B=BP+f&Q!#B=BPBh (4.3) 

Group 00. m 

‘PI = LB”, ‘pa = y=pB=& f = f ((PI? %) 

Vi = fl%’ + f2y:B=; Wik = f~tiyklB= = 

Sik = f, cik + f2yik + f ,c’iy:‘B= + fay:y;B=BP (4.4) 
Grow 00 : m 

‘~1 = C=,B=@‘, ‘~a = y=,B=& f = f (cpl, 92) 

Vi = <f,Ct + f,y; + f&f=) B”, Wik = f&2* $ (f,cy;’ + f,r;?QI;3) B=Bp 

S’” = f$” + fzyik + (fntya” + f,sh’y;’ + f,&2!$ + fsyh’@) BaBB (4.9 

Group 00 

‘~1 = 5=B=, ‘~1 = y=,B=BB, f = f ((P1: CPJ 

vi = f15’ + (fzri -I- f&f=) B4, Wik = flQik + (f 5 2 [i kl y a + f ~%-ikl) B” 3 .a 

Sik = fJik + fayik + (fsl;“yt’ + f&(‘Q!i) B=+(f,y:y; + fey:@) B=Bp (4.6) 

5, The axial vector Ii may be written (as W was in the preceding 

Section) in terms of Its antisymmetric dual tensor of the second rank H”. 

Groups 00j oo.mdoo/ co 

cp = ga,gppHaPHh”; f = f ((P) 
Wik = fHik; Sik = flgik + feg=,Hi=HKB 

V’ = 0 for 00/w-m, V’ = fE!=pH=p for eo/oo (5.1) 
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Groups 03 : m and 00 

6. In the appllcatjona to material tensors one often encounters addl- 

tional restrictions of symmetry concerning the indices. If, for example, E 

and D are respectively the vectors of strength and induction of an electric 

field, then the tensor of specific inductive capacitance, defined by the 

relations D’ = &Ek , mUSt be symmetric: Eki E Eik. From the derivation of 

these relations [2O) It is clear that, in the nonlinear case, D = F(B), one 

muSt require that the function F [I] be a potential function, that is to 

say, that D’ = i?f fE) I d&, where J(E) is a function of the invariants 

of the vector 8 with respect to the group G of symmetries of the medium. 

The results obtained permit us to write down the form. of the potential 

functions V(B) and W(H) \employing the notation of Sections 4 and 5): 

g1*oups m:cc:m,czo:Z, co:nz 

groups oc.m, oc 

groups 30/ 3o.m, oo/ oc 

(6.2) 

(6.31 

Wik= 2??&_H” (6.4) 



Tensor functlonr of vectora cwtiblt rlth texture symctry 813 

grows rn. 00: m, 00: 2, 00-m 

groups 00 : m., 00 

In general the potential functions may be obtained 
for example 

(6.5) 

‘6.6) 

also for other cases, 

(6.7) 

where In Equations (6.7) It 1s supposed that the group C leaves lnvarlsnt 
the geometrical tensor E (if this property does not hold, the corresponding 
functions are identically zero). 

A comparison of the formulas for the potential functions with the general 
formulas of Sections 4 and 5 permits the determination of the conditions 
under which the tensor functions V(B) and W(H) are potential, conditions 
which vary from group to group under consideration. For example, let us look 
at the functions V(B) : 

Groups oc/.oc.m and =/a~ : all functions V(B) are potential. 

Groups l~.oe : m and 00 : m 

afl af2 -=- a% da1 
Group 3t.: 2 

f3 = 0 

Group X . ,,L 

Group x 

2 afl _ ah 
@2 acF1 

(6.8) 

WV 

(F.10) 

(6.11) 

In Sections 4 and 6 we gave all possible cases of the dependence of a 

polar and axial vectors, and slso ofthe dependence of an arbitrary second rank 

tensor on a ‘polar or axial vector and an arbitrary number of scalars, which 

are conpatlble with the symmetries of Isotropic and nonlsotropic media and 

different textures. Indeed, in the expansion ‘r = Zf,,,Q,,, the functions 

f(,,, may depend not only on the lnvarlants of the tensor A , but also on an 

arbitrary number of other lnvarlants of the group of symmetries of the medium, 

m particular, in scalars, that is, the invariants of the group m/ (D - m . 
It Is also clear that the formulas of Sections 4 and 6 also give the most 

general arbitrary second rank tensor having the specified properties (and 

not only just the symmetric or antisymmetric); because an arbitrary second 

rank tensor 2”’ has the form 

T" (A) = Sik (A) + Wik (A) 
In a rectangular Cartesian system of coordinates, with base vectors e,, 

e, and e, (see the beginning of Section 4), all formulas given take a simple 

form. They take on an even simpler appearance when, making use of the free- 
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dam of rotation of the vectors e, and e, 

vector 0, perpendicular to the vector B 

in their plane, one chooses the 

or to the axial vector H . 

7. The fulfillment of the requirements discussed at the begi-nning of 
Section 3 enables one to obtain Important information from the formul,as of 

Each of the tensors St in the expansion (3.1) is of the form 

h..,i, 5*.*.ir 

%) = 5,) p,(l)...p,fl)...p,(p)...~~(q) A 
p,(l). ..@ 

. . . 
A p**)..&(P) 

(7.1) 

The tensor Pbj is defined by (7.1) up to an arbitrary permutation of the 
group of indlzes 
with respect to all transfc?rmatlons of this group of indices. 

$2’1.. . . $ ti); It is therefore natural to seek t;n;r;;;;ze 

condition, the tensor P(,) is yp iquely determined, and Its internal symmetry 
equal 7 X [aa ] _ The tensor tq), obviously, is Invariant with respect to 
the group 0 which is defined by the geometrica$tensors K,,). The number 
of its linearly independent components is m =nio (see Section 3). 
may assert that, when the polynomial coeffic!ents 

Thus we 
ftvj (of degree 4 - c(v)) 

are allowed to take on all admlrrsible real values, then the tensors Ptqj 
vary over all possible linear spaces of tensors of internal symmetry TX[aq], 
with constant real components, titi1C.h are Invariant with respect to the group 
0. 

Let us apply this method in the following simple case: let us determine 
the tensor of rank nine, P , with internal symmetry [V*] [if'], which is 
Invariant with respect to the group -: 2 (see Section 4). In order to 
determine the tensors S,,) 
of B), we must put 

(of seventh degree with respect to the corrponents 

Substituting the expressions for V, and cpz, we get 

The sought tensor 
for ,a. * . 

P , properly symmetrized by the set of the coefficients 
Bo, that is 

Thus, we have solved here, almost without any calculations, for tPnEorS 
of arbitrarily high order, tte problem proposed and solved in [4 and 211 
only for tensors of the four lowest ranks; however, the problem Is solved 
Here only for teneors which possess the specified internal symmetries: 

8. The Hamilton-Cayley formula 

Tik = f,+* + f,A’* + fBAtaAak, fi,a,s = fl,a,s (&, A?#% -4:+$%) (8.!} 

gives the general functional dependence of a single symmetric tensor of the 
second rank on another which Is compatible with the isotropy Of the mediu%. 
this fomm\la plays an important role in the nonlinear mechanics of an iso- 
tropic continuous medium [l]; from it, in particular, one derives much more 
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special relations which are employed In the nonlinear theory of elasticity 
(*). An analogous role, in the nonlinear theory of Isotropic continuous 
media, is played by the more obvious relations of the form 

vi = f (B,B=) B’, sik = fl (B,B=) g’” + fs (B,$=) B’Bk 
Generally, formulas of the type T = F(A), which represent the general 

form of the functional Uependence of a tensor T on a tensor A (or , in a 
still more general case, on tensors AI,..., A,,,), which is compatible with an 
Isotropic medium, may be referred to as the generalized Hamilton-Cayley for- 
mula for isotropic media. 

The formulas of Section 4, therefore, may be called the generalized 
Hamilton-Cayley formulas which represent the dependence of avector,aWmmet- 
ric tensor. an antisymmetric tensor, and a general tensor of the second rank, 
on a vector, for a medium with limit symmetry. The corresponding formulas 
of Section 5 may be regarded as the generalized Hamilton-Cayley formulas 
which represent the dependence of the quantities in question on an axial vec- 
tor, or on an antisymmetric tensor of the second rank. 

Perhaps the Hamilton-Cayley formulas for potential dependence should alto 
be regarded as an important particular case. Some of these formulas are 
given in Section 6. 

The subject and the fundamental Ideas of this paper arose from discussions 
with L.I. Sedov. The author wishes to express his deepest thanks to L.I.Se- 
dov and V.V.Lokhln. 
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