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The general form of tensor functions of axial and polar vectors, compatlable
with texture symmetry, is given. The sought functions (scalar; polar and
axlal vectors; symmetric, antisymmetric and general tensors of the second
rank) are represented by means of a system of linearly independent vectors,
which depend on products and contractions of the so called geometrical ten-
sors. The coefficients of the expansion are arbitrary single valued scalar
functions which depend on the mentioned quantities. The obtalined expansions
satisfy two 1lmportant basic requirements: (1) each component of a tensor
function is an entire rational function of the tensor argument, that is, a
polynomial in its arguments, (2) the representation od each tensor function
is unique, that is, the teansor function vanishes if and only if all of the
coefficlents in its expansion are identically zero, consldered as polynomi-
als in thelr arguments, A particular case of these functions is concsidered,
that of the potential functions. The formulas given are the analogue, for
vector argument and anisotropic medium, of the Hamllton-Cayley formulas,
when these are considered as the general form of tensor functions of a ten-
sor argument which are compatible with en 1sotrcpic medium.

In Section 1 the fundamental concepts and the formulation of the problem
will be found while Sections 2 and 3 are devoted to the general method of
solution employed. Sections 4 and 5 contain the general form of the tensor
functions of a vector and an axial vector which are compatible with a tex-
ture symmetry. Potential functions are considered in 8ection 6. In Sectlon
7 the tensor functions are applied in constructing invariant tensors . In
Section 8 these results are related to the Hamilton-Cayley formula.

1. In many considerations of physics and mechanics of continuous media
one has to employ relations of the form

T = F (A(l): ey A(m)) (1.1)

where the tensors T and A (u =1,...,m) are so called field tensors
which describe certain physical flelds.

The material tensors Da)(° =1,...,8), which determine the characteris-
tic properties of the medium, usually appear explicitly in (1.1)

T=F®@uy,..DuiAgm -+ Aom) (1.2)
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Tensor functions of vectors compatible with texturs symmetry 805

The relations (1.1) and (1.2) depict the tensor field T which 1s pro-
duced at a certain point of the medium as a consequence of the action at
this point of the tensor fields Aﬂ#‘

Specific cases of the relations (1.2) are, for example, the well-known
Hooke's law equations for anisotropic media and their extensions to the case
of plezo-electric and elastic-viscous medla. As a matter of fact, these
equations represent only the first terms of the Taylor expansions of the com-
ponents of the stress tensor in terms of the components of the deformation
tensor, the velocity of deformation tensor, and the electric field vector.

In order to take into account the higher order terms in the expansions, one
has to introduce material tensors D(o) of higher rank. For example , the
expansion of the component T!J of a second order rank tensor T 1in terms
of the components 4, of the vector A has the form

T = DY + DYA* + DY A%4' + .. (1.3)

The tensors qc,, which describe the properties of the contunuous medium,
must be invarilant with respect to the group of point symmetry ¢ of the
medium (fleld tenscrs, of course, are not required to satisfy this condition).
The consideration of the quadratic, cublec, and higher crder approximations
requires the construction of the corresponding higher rank tensors which are
invariant with respect to the point group. Solution of this problem ,
although elenentary, i1s extremely compllcated.

Nevertheless, the expansion (1.3) is not compietely satisfactory, not only
because of the technical difficulties already mentioned, but also because, as
a matter of fact, it represents only polynomial dependence of the components
of the tensor T on the components of the tensor Nu . Nominally, the series
(1.3) represents any analytic functionT=F (L, ... (m)).but practically the
series is always cut off after a few terms and a satisfactory accuracy is
obtained in a certain vicinity of the expansion center, Besides, in mechan-
ics of continuous media one employs, sometimes, models which exiblt a nonana-
lytic dependence of some tensors on others.

In the mechanics of isotropic media, already long ago one had consldered an
arbitrary functional dependence between tensors which are compatible with
such a medium. The theory of these isotropic tensor functions is describved,
for example, in [1]. They are widely used in the ncnlinear theory of elas-
ticity [2] and of an elastic-viscous [3] isotropic continuous medium. It
seems natural to seek to extend the theory of tensor functions to an aniso-
tropic continuous medium. In this paper this problem is solved when the
point group of symmetry of the anisotroplc medium 1s one of the limit point
groups of symmetry of Plerre Curie (*), the argument of the function is a
polar or axial vector, while the function itself is a polar or axlal vector,
or a symmetric or general tensor of the second rank.

In order to formulate more precisely the problem, one needs the notions
of internal and external symmetries of tensors. The group of internal sym-
metry of a tensor [5] 1s, in the general case, an antisymmetric group [6].

*) Anisotropic media with this kind of symmetry are often called textures
(see, for example, [4]).
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Its operations are permutations of indices which leave invariant all compo-
nents of a tensor, and its antlioperations are the permutations which reverse
the sign of each component. The group of internal symmetry of a tensor may
be represented by the transformation «+ of the orthogonal group which trans-
forms its own components, If a tensor of rank r does not possess internal
symmetry, then 1ts components are represented by the rth power of a vector repre-
sentation |V of the orthogonal group: «r = ¥, I1f the tensor possesses a
nontrivial internal symmetry , then 1 18 a certaln symmetrization of an
rth power of a vector representation YV . The symbol of this representation
will be used, following Jahn [7], to denote the internal symmetry of a ten-
sor. Thus, the symmetry of a tensor of rank r , with resect to every index,
will be designated by means of the symbol of an rth symmetric power of a vec~
tor representation [V*] and the symmetry and antisymmetry with resect to g
indices, where & < r , will be denoted respectively by [ 1V -* and
{r*ivr=*, ete.

Tre group of exterior symmetry [8] of a tensor {*) is the maximal point
group ¢ which leaves invariant all the components of a tensor; 1f c{ {g)
is a transformation belonging to the group (¢ cof exterior symmertry of’a
tensor Aii...‘r and only in this case

(' (). .cdr (@—8) ... 87) At =0 EE06) (1.4)

Employing the terminology Just introduced, let us formulate the problem
before us., Suppose that the components of a tensor T of rank r and inter-
nal symmetry 1t are functions of the components of a tensor A of rank g,
internal symmetry a and exterior symmetry G4

Ti""ir — Fi;...'ir (Aj,...‘is) (1.5)
Since T and A are tensors, then, under an arbitrary transformation of
coordinates ga', , the transformed components of the tensors T and A must
satisfy Equation

d:’,. . a;:Til'...ir’ — F'i,...i'_ (ag_",,. . a;:y Ajll"~ja') (1_6)
8
Ir ai, = c,(g), § E G 1s one of the point transformations of the group
6 , then Edquations (1.5) and (1.6) must be equivalent. The problem consists
in finding the most general form of the functions G, G4, which are such
that, for given F*% and o, the equations (1.5) and (1.6) are indeed
equivalem:.'

2. The components of the tensor T must, obviously, remain invariant
under all transformations which belong to the point (“} group I which 1s
the intersection of the point group ¢ of symmeliry of the medium and the
group GA of external symmetry of the tensor A . The set of all tensors
which fulfill this requirement and possess the internal symmetry r , con-
stitute a linear space, whose dimension, as follows from the theory of group
representations [ 9], eaquals

1
"=y 2% @ 20)

#)  In [8], where this concept was firts introduced, the term "tensor sym-
metry was employed.

%%} The group I may colncide with the group G of external symmetry of
the tensor T , but, in general, it is only & subgroup.
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Here N(I') denotes the order of the group [ and XT(U) 18 the trace
of the matrix corresponding to the element g of the group T under the
representation 1 of this group. If T 1s one of the limit polint groups,
then the summation 1s understood to mean integration over the group.

The tensor T, as in [1, 4, 5 and 10] will be sought in the form
n
T =2 fuQw (2.2)
v=1

where Q, (v = 4, ...n) are linearly independent tensors of internal
symmetry T , whose components are invariant with respect to the group T .
Since the tensors (2“) constitute a basis for the linear space of tensors T,
it is true that any tensor having the required properties may be represented
in the form (2.2). The coefficients f), of this expansion, 2s well as the
components of the tensors (lhh are certain functions of the components of
the tensor A . In the calculations we shall employ the so called geometri-
cal tensors I(w)(n =1,... p) (introduced by Sedov and Lokhan in [4 and
11]), which is a set of p tensors with constant components, ietermining
uniquely the point group ¢ , the intersection of the external Symmetry
groups of these tensors.

Obviously, all the scalars obtained by means of multiplications and con-
tractions from the geometrical tensors I(m),of the group ¢ , and the tensor
A , are, themselves, invariants of the tensor A with respect to the group
G , and, desides, are integral rational invariants. As id known [12 and 13],
all those invariants may be obtalned by means of multiplications and llnear
combinatlions out of a certailn finite set ¢,,...,p,, the so called integral
rational basis. The number #% may coincide with the number

=1
ko - N (P) ggp Xa_ (g) (2‘3)

of functlionally independent invariants, but 1t may also exceed it.

We shall call a representation (e, ,...,,) unique, whenever s , con-

sidered as a function of the components A4’r-Js. 1s identically zero; it
follows that 1t must alsv equal zero when considered as a function of the
invariants g, , thought of as independent arguments. In the case % = k,
each invarlant ;y may be uniquely written in the form p(p,,...,p,).

k> k, , let us lsolate,from the total number of invariants, k which are
functionally independent: @1, - - - Pk, (let us call them "principal"), and
let the remaining ("complementary") Anvariants be denoted by

wlv"'71pl(l=k'—ko)-

Then it may be proved that [14] an arbitrary invariant ¢ may be uniquely
written in the form

3 ® 1
D=fot D 0ht D D bt (2.4)
A =1

A=1 p=1

where fos f fxp:--- are, elther arbitrary functions of the principal invari-
ants or else are identically,zero, and where, besides, beginning with a cer-
tain index ¢ , all fa..hg, llr-ltlua"' *are equal to zero (and thus the sum
(2.4%) has only a finite number of terms). Further, in the concrete cases of
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Sections 4 to 6, we will have k =k, .

In many papers [14 to 16] it 1is supposed that and are polynomials
in the invariants @y and the components A4 éhis restriction, as shown
in [17], may be easily removed. For arbitra%y’functions, on the other hand,
the concept of unique representation, which is very easy for polynomials,
becomes meaningless. For thils reason, the functions s will be supposed,

in the sequel, to be plecewlse analytic, for the needs of practice this class
1s wide enough, and the concept of unique representation does not involve
any doubts 1in this case.

From the geometric tensors I(Uﬁ and the tensor A, by means of multipli-
catioens and contractions, we may obtailn also the set of tensors of internal
symmetry +t . All of these, obviously, are lnvariant with respect to the
group I . Formula (2.1) shows that from these one may choose (in a variety
of ways) exactly n 1linearly independent tensors. These may be used as a
basis in the expansion (2.2) of the tensors Q.

Tensor functlons of the form

= \'Zl T (@1 - - - F1) Q::)"i‘" for k=k (2.9)
or
oot = 3 D) Q::)"i’ for k>ko (2.6)
v=1

obviously satisfy the requirements. Indeed, since the functilons f“) and
‘®@y,,, and also the geometric tensors K(») are invariants of the transforma-
tions of the group (, Equations {(1.6), for a‘ C‘ (2), g = G are simply
a linear combination of Equations (1.5), hence the passage from the system
(1.5) to the system (1.6) 1s reversible. Consequently, the system (1.5)

and (1.6) are equivalent.

3. Since, in applications, one often restricts attention to entire ra-
tional tensor functions, 1t 1s natural to restrict further the expansions
(2.5) and (2.6). Then, let us require further: (1) that f.) (§, .. -, Px)
be polynomials in thelr arguments whenever T% % are polynomials in the
11L”48, (2) that the expansions (2.5} and (2.6; be unique, that is, that
T = 0 if and only if all f, = 0.

The method followed here, in view of the linear independence of the tensors
(IU), and the uniqueness of the basis functlons fu) — certainly satisfles
the second requirement, but the first reguirement remains to be verified.
One may employ another method suggested by Rivlin [15 and 16], then the
first requirement is clearly satisfied, but 1t remains to verify that the
second one is actually satisfied.

Let us indicate how to verify that the second requirement is fulfilled.
Let us expand the tensor T 1in powers of the tensor A

T =2Tm .1)

q
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where the components of the tensor T(q) are homogeneous polynomials of degree
with respect to the components of A, The number of linearly independ-
ent (*) components of the tensor T 1s

Mo = gy 2 % (8 7 @ (3.2)
g

and, in particular
1
o = NG 2_ x. (8) 3.3)
=G

Here [xaq] (g) 18 the trace of the matrix of the representation [q?]
which corresponds to the element g of the group G.

On the other hand, the number mq* of terms of degree ¢ , wilth respect
to the components of A, in the sum Zf(v)Q::')”'r can be easily calculated
by the methods of combinatorial analysis [18].

If, as 1t happens in this case, k = k%, , then the number of terms of
degree ¢ 1n each of the polynomials f(v) equals the coefficient of 3! in
the formal expansion

k

I (1 — &)1

x=1
where b(x) 1s the degree of the principal invariant @, with respect to
A. From the definition of the tensor Q(v) it follows that 1ts components
are homogeneous polynomials of the same degree of(v) with respect to A.

Therefore, mn* equals the coefficient of ¢* in the formal expansion

9

F* (f) = f} M IkI (1 — P01 (3.4)

v=1 x=1

If %> k,, then F*(t) can be obtained almost as easily [14].

The equality of the numbers m, and m‘* , for every ¢ , 1s the criterion
of fulfillment of the first requirement.

All reducible formulas in Sections 4 and 5 are verified for llnear inde-
pendence of the tensors Q(v) and for equality of numbers m, and m‘*at all
values of g¢q

Formula {3.2), however, is not convenient for calculation of m,. Let us
expand the representation t X [@%] of the orthogonal group in irreducible
representations,

If ¢ 4s odd then in the vector representation (@ = v = D,") we have

[a%) =D," + D& + ... + Dy

*) Here the coefficients of the linear relations are numbers, and not
functions of the components of A , as was the case in (2.5) and (2.6).
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and, for the axial-vector representation (@ = {V?} = (D%) we have
[0 =Df+DEL ... 4 DF
If ¢ 1s even, then in both cases we have that
[aq]=D.g+D2g+...—|~D§

where p,‘ and D,“ are conventlional notations for the even and odd irre-
ducible representations of welght J of the orthogonal group {see [19]).
The expansion of 1 1in terms of irreducidble representations of the ortho-
gonal group, and the subsequent multiplying of the irreducible representa-
tions may be carried out in an elementary way [9]. The number m, equals
the number of unique representations of v X [q%] 1in irreducible represen-
tations of the group ¢ . Hence, if (¢ 1s the orthogonal group, then m,
is the number of D,* representations in the expansion of «t X [a%] in irre-
ducible representatlions of the orthogonal group, while i1f ¢ 1is the group
of rotations, then m, is the sum of the p,* and p, representations in
this expansion. The }ormulas for the reduc%ion of the irreducible represen-
tations of the orthogonal group to the representations of its subgroups {7],
enable one to compute the number of untgue representations of each group in
the expansion of 1 X [a%], that 1s, to determine m, for all the remaining
groups.

4, The sets of the geometrical tensors I(@),which determine the limit
point groups, were given by Sedov and Lokhin [4 and 11]; here these sets
will be in a slightly modified form, more convenlient for our application.

Let e,, €, and €3 be unit vectors of a Carteslan system of coordinates,
with e, directed along the principal axis. Let thelr components in an
arbitrary coordinate system be lenoted by £ ni and £, respectively.
For brevity, we shall employ the notation Eili, ., E¥ = ¥k and the analo-
gous ones MNY--¥ and [H-%,

The geometrical tensors for all the limit groups (*), in this notatlon,
are given by

group oo/ oo gik, B = BEligitH

group m-oo i m Lik, yik = gik . [k

group oc : 2 gk, gtk LiQ* (@ = 2¢ligh))
group oo-m gy, oyt

group ool m §5k$ Yika Qik

group oo T, y*, Qi

We shall next write down the basis invariants o, of a vector B, scalar
functions r(B), vector functions V(B), antisymmetric tensor funetions of
the second rank W(B), and symmetric tensor functions of the second rank
8(B), compatible with the symmetries of an anisotropic medium, for each of
the seven limit point groups.

*) The groups are designated as was done by Shubnikov [6].
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Groups oo/ oco.mandoo/ oo
¢ = gpB°B*, f=1f@), V' =B, 8*=fg*+ BB
W* =0 for 00/00 -,y W™ = fE¥*.B*  for oojoo (4.1)
Group m-o0 :m
@, = CaﬁBaBB, P = 'YaBBaBB, =15, 9)
Vi= (G + fe) B WY = jtiviBeB®
S* = f,L* + foy* + (fevavs + fo&Sve) B°B® (4.2)
Group oo : 2
01 = LapB°B®, @y = VBB, f=[(9, %)
Vi = (file + fava) B* + f32aQ'sB*B®
W = (1,0 Q% + 7,00Q") B* + f,ti5BB°
S*= T+ oy *+ 8 QOB+ (ovavs+ i3S ) BB +fola XV BB’ (4.3)

Group oco.-m

Py = LB, P = 'YaﬂBaBB: =17 (9.9)
Vi = £, + fyiB% w = ftliyip
8% = £,t* + 14" + £LEB* + fviveB°B® (4.4)

Group oc: m
Py = QaﬁBaBBs Py = YaBBaBBr f=1(@n o)
V= (fa+ fava + £Q0) B, W¥ = £,0% + (U + f,iQY) BB
S* = £,8% + 1™ + (fevars + fL8VE + £L8QR + fwlQY) BB (4.5)
Group o0
0 =GB @ =vuBB,  f=f(pn %)
Vi= AT+ (fvk + £:Q5%) BY, W™ = 1,0% + (7,259 + 100" B
S* = 18% + 1" + (LR + LL0QY) B* +(fvivk + fi Q) B°B® (4.6)

5. The axial vector H may be written (as W was in the preceding
Section) 1in terms of its antisymmetric dual tensor of the second rank g'%.

Groups oo/ oo.mandoo/ o0

P = 8,8, HPH™; =1
W‘ik —_ ink; Slk — flgik + fzgaBHiaHkB

Vi =0 for oofo0-m, V= fEfuBHaB for oo/co (5.1)
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Groups Mi-0C:m, 00 2, co-m

0= VY HOHY, gy =, L HHY, f= e
W = (fitivs + .w) B Vo P H'™
P A A BEVEH - (Fvaviles + AV YR) HH
+ stQYIi)TaeTw HB P+ fPo

Vi =0 for m-oco 1 m
V= (fla‘szas + f20a Q) H® + £,0 Quve HPH™  for 51 2
= fl + fy QzYBIIag + faqu;YBPIYGBII) for >o-m (5.2)

Groups o© ! M and o©
@y = QaBHaBs Py = YazgﬁstagHM
f = [ (@1 92) W = £,Q% + (RN + fEi el B
= £0% -+ fy" + (LI + £LEVED B b (fviviGas +
+ QN B E
Vi=0 for w:m, V' =fT + (favals + [:20le) B® for = (5.3)

6, In the applications to material tensors one often encounters addi-
ticnal restrictions of symmetry concerning the indices. If, for example, E
and D are respectively the vectors of strength and induction of an electriec
field, then the tensor of specific inductive capacitance, defined by the
relations Di = &:,i;cEk ,must be symmetric: €z = €i;. From the derivation of
these relatlons [20] 1t is clear that, in the nonlinear case, D = F(E}, one
must reguire that the function F (1] be a potentlial function, that is to
say, that D' = §f (E)/ O0E;, where y(B) 1s a function of the invariants
of the vector B with respect to the group ¢ of symmetries of the medium.

The results obtained permit us to write down the form of the potential
functions V(B) and W(H) .employing the notation cf Sections & and 5):

groups oo/ oc.m, oo/

i o Of pi
V=258 (6.1)
groups m:oc:m, 00: 2, 00 m
vi=a(ht+Ln)s (6.2)
groups oc.m, oc
aq,ll +22 YaB (6.3)

Eroups oo/ oo.m, o/ oc

i g i
W"=25(.pf..H" (6.4)
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groups m.oco:m, 00 : 2, oo-m
Ak __ o (0 ik o Of plinkl\ grad B 5
W =2 (gl vink + o ) B (6.5)
groups ©0.m, o©
ik _ Of qik Of #li, k1pyaB ‘

In general the potential functions may be obtained also for other cases,
for example

0*f (B) ik .. pik 0f (B) i i Of (H)
= 3B,3B, ° Wi=E.B, »  V=FPuom,

where in Equations (6.7) it 1is supposed that
the geometrical tensor B (if this property
functions are identically zero).

A comparison of the formulas for the potential functions with the general
formulas of Sections 4 and 5 permits the determination of the conditilons
under which the tensor functions V(B) and W(H) are potential, conditions
which vary from group to group under conslderation. For example, let us look
at the functions V(B):

Groups oc/:oc.m and oofoo

Sik (6-7)

the group (¢ 1leaves invarlant
does not hold, the corresponding

all functions V(B) are potential.

Groups ni-oc:m and oo:m
0fy  0fa .
39 = 90 (6.8)
Group oc.: 2
of1 df2 -
E = o1’ f3=20 (6.9)
Group ocom
afy 0fy
275 = 6.10
9,  Og ( )
Group
8fy 9f, .
- Z2 = 0 6.11
N ©1h

In Sections 4 and 6 we gave all possible cases of the dependence of a
polar and axlal vectors, and alsc of the dependence of an arbitrary second rank
tensor on a polar or axial vector and an arbitrary number of scalars, which
are conpatible with the symmetries of isotropic and nonisotroplc media and
different textures. Indeed, in the expansion T = 2f. Q) the functions
f(.,) may depend not only on the invarlants of the tensor A , but also on an
arbitrary number of other invariants of the group of symmetries of the medium,
.n particular, on scalars, that 1s, the invariants of the group =/ = + n ,

It is also clear that the formulas of Sections 4 and 6 also glve the most
general arbltrary second rank tensor having the specified properties (and
not only Just the symmetric or antisymmetric); because an arbitrary second

rank tensor I'* has the form
T (&) = S* (A) + W™ (A)
In a rectangular Carteslan system of coordinates, with base vectors

e, and
form.

el >
e, (see the beginning of Section %), all formulas given take a simple
They take on an even simpler appearance when, making use of the free-
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dom of rotation of the vectors ¢, and e, in their plane, one chooses the
vector @, perpendicular to the vector B or to the axial vector K .

T. The fulfillment of the requirements discussed at the beginning of
Section 3 enablgs one to obtain important informatlon from the formulas of
Sectio:rllsrll and 5, Indeed, these formulas permig one tqo obtain easily the

eneral form of tensors of internal symmetry [VY], V [V9], (V2} [V9], [v2] [V9],
2V, [, VIR, 3 [739), (1) (727, 7 ((7%)9), Which are tnvariant
with respect to the glven Curie group, for any g .
Each of the tensors T, in the expansion (3.1) 1is of the form

f0dy

bodp B, 1.8, (@...8,(@
@ =P BW.p0. g @ g @4 T g BT

T (7.1)

The tensor Py, 1is defined by (7.1) up to an arbitrary permutation of the
group of indizes ... B 1t is therefore natural to seek to symmetrize
with respect to all transformations of this group of indices. Under this
condition, the tensor P(q) is iquely determined, and 1its internal symmetry
equal 171 X [a%]. The tensor (g obviously, is lnvariant with respect to
the group ¢ which 1s defined by the geometrical tensors K(n) . The number
of its linearly independent components is nm am,* {see Section 3). Thus we
may assert that, when the polynomial coefficlents f(\.) (of degree g - elv))
are allowed to take on all admissible real values, then the tensors

vary over all possible linear spaces of tensors of internal symmetry v X[a®],
with constant real components, which are invariant with respect to the group
G .

Let us apply this method in the following simple case: let us determine
the tensor of rank nine, P , with internal symmetry [¥2] [ ], which is
invariant with respect to the group o: 2 (see Section 4). In order to
determine the tensors S(?) (of seventh degree with respect to the components
of B), we must put

h=f=fi=f=0 fs = k@® + Fa@i’@s + ha9ie? + k@S
fo = ks@i® + ke@1@s + Fy@o?

Substituting the expressions for g, and g,, we get
. s A
84 = LN BP (kyGynyups + Kabuapy Yoo T Kol Tuw Yoo F KV Ty Yoo) B* B B¥ B'B*B° +
+ 65 Q%Un, P BPB B (k00 + KobyTpo + KrTy,Te0) B BYBPB°

The sought tensor P , properly symmetrized by the set of the coefficients
for BP..,B° that is

j e i ] is3) i s))
P"Jklmﬂp" - klmzk Ci:'tmprs) + kzm(kci"mnp Yre) T kagg(k i Tnp Trs) +
i 43 1 N 4.7 (L)
+ k‘Qg(k ;»3) Tim an Trs) + ks Qf(ch 7%) gfrmprs) + kegf(kﬁ) Tmn gpra) + ke Q~(k T Tmn’rprgs}
Thus, we have solved here, almost without any calculations, for tensgors
of arbitrarily high order, the problem proposed and solved in (4% and 21]
only for tensors of the four lowest ranks; however, the problem 1s solved
Here only for tensors which possess the specified internal symmetries.

8, The Hamilton-Cayley formula

B
T = f g% + A% 4 £,48,4%, £ 0= e A% AR, AT AN AY) (8.1

gives the general functional dependénce of a single symmetric tensor of the
second rank on another which is compatible with the isotropy of the medlum.
This formula plays an important role in the nonlinear mechanics of an iso-~
tropic continuous medium [1]; from it, in particular, one derives much more
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special relations which are employed in the nonlinear theory of elasticity
*)., An analogous role, in the nonlinear theory of 1sotroplc continuous
medla, 1s played by the more obvious relations of the form

Vi=1(B,B% B, s = f, (8,8%) ¢* + 1, (B,B%) B'B* 8.2)

Generally, formulas of the type T = F(A), which represent the general
form of the functional dependence of a tensor T on a tensor A (or , in a
still more general case, on tensors Ai,..., A,y,), which 1s compatible with an
isotropic medium, may be referred to as the generalized Hamilton-Cayley for-
mula for isotroplc media.

The formulas of Section 4, therefore, may be called the generalized
Hamilton-Cayley formulas which represent the dependence of a vector, a synmet-
ric tensor. an antisymmetric tensor, and a general tensor of the second rank,
on a vector, for a medium with limit symmetry. The corresponding formulas
of Section 5 may be regarded as the generalized Hamilton-Cayley formulas
which represent the dependence of the quantities in question on an axial vec-
tor, or on an antisymmetric tensor of the second rank.

Perhaps the Hamilton-Cayley formulas for potential dependence should alco
be regarded as an important particular case. Some of these formulas are
glven in Section 6.

The subject and the fundamental 1deas of thls paper arose from dlscusslons
with L.I. Sedov. The author wishes to express his deepest thanks to L.I.Se-
dov and V.V.Lokhin.
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